Travelling wave solutions for some two-component shallow water models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact travelling wave solutions for some complex nonlinear partial differential equations

This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion  ethod for  constructing exact travelling wave solutions of nonlinear partial  differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and  Derivat...

متن کامل

Exact Solitary Wave Solutions in Shallow Water

Long's equation describes stationary flows to all orders of nonlinearity and dispersion. Dissipation is neglected. In this paper, Long's equation is used to attempt to model the propagation of a solibore -a train of internal waves in shallow water at the deepening phase of the internal tide. 1. The Solibore Phenomenon The internal tide in shallow water often has a sawtooth shape rather than a s...

متن کامل

Travelling Wave Solutions for Some Nonlinear Evolution Equations

Nonlinear partial differential equations are more suitable to model many physical phenomena in science and engineering. In this paper, we consider three nonlinear partial differential equations such as Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation which serves as a model for the unidirectional propagation of the shallow water waves over a flat bottom. T...

متن کامل

New Exact Travelling Wave Solutions for Some Nonlinear Evolution Equations

In this paper sub-equation method with symbolic computational method is used for constructing the new exact travelling wave solutions for some nonlinear evolution equations arising in mathematical physics namely,the WBK, Z–K equation, and coupled nonlinear equations . As a result,the traveling wave solutions are obtained include, solitons, kinks and plane periodic solutions. It worthwhile to me...

متن کامل

Traveling Wave Solutions for a Class of One-Dimensional Nonlinear Shallow Water Wave Models

In this paper, we shall study traveling wave solutions for a set of onedimensional nonlinear, nonlocal, evolutionary partial differential equations. This class of equations originally arose at quadratic order in the asymptotic expansion for shallow water waves [4,10]. The famous Korteweg–de Vries equation – which is nonlinear, but local – arises uniquely at linear order in this shallow water wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2016

ISSN: 0022-0396

DOI: 10.1016/j.jde.2016.03.035